1, 2, 3… Probando


Cuando hacemos bibliotecas en general, resulta muy difícil poder abarcar todas las posibilidades, por mucho que pensemos, y analicemos.

Sin ir más lejos, esta última semana me encontré con que tenía que hacer algunos cambios en nuestra biblioteca common, para facilitar serializar (almacenar binariamente, en este caso, ya que serializando a XML no necesitaba modificar nada). Pero de eso hablaremos después.

El punto es que, tarde o temprano, modificaremos nuestro código, lo cual no está para nada mal… se llama evolución J

Esto nos lleva a la necesidad tener previstos mecanismos para comprobar que los cambios no afecten las funcionalidades que ya teníamos aseguradas y probadas.

Cuanto más evolucionemos nuestras bibliotecas, más complejos serán los pasos para volver a probar que todo funcione como esperamos.

Es por ello que existen los proyectos de tipo prueba, que incluye no solo esta opción (probar bibliotecas) sino que abarca pruebas de interfaz, de rendimiento, etc.

Pero, hoy, hablaremos de pruebas para nuestras funciones, o Pruebas Unitarias

Es de considerar que un mismo proyecto de pruebas, podrá aplicarse a múltiples bibliotecas, e inclusive hasta es conveniente, dado que nos permitirá automatizar pruebas múltiples en el tiempo.

Procedamos, pues, a agregar un proyecto de pruebas.

El proyecto expone contiene clases de pruebas unitarias, marcadas como TestClass (por atributo).

Además, cada método que debe cumplir una prueba, se decora con el atributo TestMethod.

¿Y por qué es esto?

Sencillamente, porque un motor de pruebas, embebido en Visual Studio, reconoce dicha clases y métodos, para ejecutarlos cada vez que se requiera hacer las pruebas.

Team Foundation Server (Y Visual Studio Online), poseen motores de pruebas parecidos.

 

Anunciar si la prueba fue satisfactoria o no.

Cada método de prueba es un procedimiento, que hace lo necesario para llamar una función (o inclusive más).

Dicho método debe reportar al motor de pruebas si ésta fue satisfactoria. Y esto se hace utilizando Assert (Afirmar, aseverar), que dispone de varios métodos de respuesta lógica, como “Es Igual”, “Es Distinto”, etc.

Así el motor sabe, cuando las pruebas se realizan en modo automatizado, el resultado en cada caso.

Veamos por ejemplo, una prueba unitaria de nuestra biblioteca de recursos.

[TestClass]
public class Resources
{
    [TestMethod]
    public void GetString()
    {
        string result = DS.Resources.Resources.ErrorTitle;
        string lang = System.Threading.Thread.CurrentThread.CurrentUICulture.TwoLetterISOLanguageName;
        Assert.AreEqual(result, lang==“en” ? “Operation error”“Error en la operación”);
    }
}

 

Finamente, podemos probar individualmente un método, e inclusive depurar el proceso de prueba, en el entorno de Visual Studio, con el menú contextual que aparece en cualquiera de los métodos marcados como de prueba.

Evaluando resultados

Al ejecutarse las mismas, el Explorador de Prueba, en Visual Studio, nos presenta los resultados.

En la imagen se muestran las pruebas de varios métodos de todas las bibliotecas de las que hemos hablado.

 

 

 

Anuncios

Generalizando recursos.


Una de las características importantes de las aplicaciones en el mundo globalizado es la necesidad de utilizar recursos para poder localizar mensajes, textos y representaciones gráficas acordes a cada posible usuario.

Esto incluye, como es lógico, cualquier comunicación que parta desde nuestras bibliotecas.

Sin embargo, considerando a futuro, el agregado de idiomas, resulta bastante engorroso mantener archivos de recursos en cada biblioteca que definamos.

¿Por qué no tener centralizados los mismos en una sola biblioteca?

Las herramientas que nos permiten manejar archivos de recursos en nuestros proyectos, generan clases que exponen dichos recursos pero que no se exponen a otras bibliotecas (no son públicas).

Lo primero que se nos ocurriría sería agregarles el modificador public, pero, el generador de Visual Studio re crea la clase completa ante cada cambio y, por tanto, deberíamos ir a modificarla en cada ocasión. L

Nos hace falta otro mecanismo que mantenga una clase, pública, que exponga todos nuestros recursos aun cuando agreguemos o eliminemos algunos.

Y para ello, nos podemos apoyar en la transformación de Texto.

Transformación de Texto (T4).

T4 aparece en Visual Studio 2010 y es en lo que se basó la generación de clases a partir del modelo de datos de una base SQL Server, en Entity Framework.

(del tema de EF… mejor hablamos en otra ocasión) L

El concepto es simple: tienes una plantilla que se usa para generar código (o páginas HTML, o texto plano), la cual puedes usar para reconstruir clases, o generar textos basados en datos (como reportes sencillos), o cosas asi.

En este caso, la idea es simple: crear una clase que exponga como público un recurso, y utilizarlo luego como plantilla para, recorriendo los miembros definidos en un archivo de recursos re exponerlos como públicos.

Los recursos.

Para mantener orden en nuestro desarrollo, definamos una nueva biblioteca de clases, dentro de la cual, definimos un archivo de recursos con un nombre específico para poder identificar la clase generada fácilmente.

   

El espacio de nombres será DS.Resources, y el archivo de recursos (y su clase derivada) CommonResources.

Una interesante herramienta de manejo de recursos.

Entre todos los componentes que podemos encontrar como extensión, tenemos una que facilita la edición de los recursos para múltiples idiomas.

Además de permitir definir los mismos en más de un idioma (y agregar idiomas a posteriori), facilita la exportación e importación de los mismos, para obtener traducciones desde profesionales del tema.

La clase plantilla

Esta clase que usaremos como ejemplo, expone una de los recursos contenidos en el archivo CommonResources desde una clase pública.

Public Class Resources
Public shared ReadOnly Property Copyright  As String
    Get
        Return My.Resources.CommonResources.Copyright
    End Get
End Property
End Class

 

 

using DS.Resources;
using System;
namespace DS.Resources
{
    public static class Resources
    {
        public static String Copyright { get 
            { return CommonResources.Copyright; } }
    }
}

 

La transformación de texto.

Agregamos ahora a nuestro proyecto, un archivo de tipo Plantilla de Texto

(Existen dos tipos de plantilla de texto. Hay una específica para que sea utilizada por tu proyecto en tiempo de ejecución. En este caso, no es esa).

El nombre que le des a ese archivo, será el que tendrá la clase luego. Por tanto, a este archivo le llamamos Resources.

Pegamos el código de la clase en este archivo, que utilizaremos para reemplazar los valores de nombre de la propiedad y tipo de datos, por los que recuperaremos de los definidos en la clase CommonResources

 

Public Class Resources
Public shared ReadOnly Property <#= sName #>  As <#= sType #>
    Get
        Return My.Resources.CommonResources.<#= prop.Name #>
    End Get
End Property
End Class

 

Explicando, los elementos encerrados entre <# y #> son código ejecutable en tiempo de transformación, mientras que el resto, se toman literalmente.

Utilizando Reflection (si, de nuevo), y el modelo de objetos de Visual Studio, podemos obtener los elementos definidos en el archivo de recursos, e incluirlos en un bucle con este código, para generar cada una de las propiedades públicas.

Este sería el código completo de la plantilla.

<#@ template debug="true" hostspecific="true" language="VB" #>
<# ' Define which assemblies must be imported #>
<#@ assembly name="System.Core" #>
<#@ assembly name="EnvDTE" #>  
<#@ import namespace="System.Linq" #>
<#@ import namespace="System.Text" #>
<#@ import namespace="System.Collections.Generic" #>
<#@ output extension=".vb" #>
Public Class Resources
<#
    dim serviceProvider as IServiceProvider= Me.Host  
    dim dte as EnvDTE.DTE = serviceProvider.GetService(gettype(EnvDTE.DTE)) 
    dim item = dte.Solution.FindProjectItem(Host.TemplateFile).ContainingProject
    dim OutPutFile as string= item.Properties("FullPath").value & "bin\debug\" & item.Properties("OutputFileName").Value
    Dim ass As System.Reflection.Assembly = System.Reflection.Assembly.LoadFrom(OutPutFile)
    Dim t As Type = ass.GetType("DS.Resources.My.Resources.CommonResources")
    Dim props = (From el In DirectCast(t, System.Reflection.TypeInfo).DeclaredProperties Where Not {"ResourceManager", "Culture"}.Contains(el.Name)).ToList
    For Each prop As System.Reflection.PropertyInfo In props
    dim sName as string=prop.Name
    dim sType as string=prop.PropertyType.Name
#>
Public shared ReadOnly Property <#= sName #>  As <#= sType #>
    Get
        Return My.Resources.CommonResources.<#= prop.Name #>
    End Get
End Property
<#
    Next
    ass=nothing
#>

End Class

<#@ template debug="true" hostspecific="true" language="C#" #>
<#@ assembly name="System.Core" #>
<#@ assembly name="EnvDTE" #>  
<#@ import namespace="System.Linq" #>
<#@ import namespace="System.Text" #>
<#@ import namespace="System.Collections.Generic" #>
<#@ output extension=".cs" #>

using DS.Resources;
using System;

namespace DS.Resources
{
   public static class Resources
    {
    <#
    IServiceProvider serviceProvider = (IServiceProvider)this.Host;  
    EnvDTE.DTE dte = (EnvDTE.DTE) serviceProvider.GetService(typeof(EnvDTE.DTE));  
    var item = dte.Solution.FindProjectItem(Host.TemplateFile).ContainingProject;
    string OutPutFile = item.Properties.Item("FullPath").Value + "bin\\debug\\" + item.Properties.Item("OutputFileName").Value;
    System.Reflection.Assembly ass   = System.Reflection.Assembly.LoadFrom(OutPutFile);
            Type t = ass.GetType("DS.Resources.CommonResources");
    System.Reflection.TypeInfo tInfo=(System.Reflection.TypeInfo)t;
            string[] noAdd = new string[] { "ResourceManager", "Culture" };
    var props = (from el in ((System.Reflection.TypeInfo)t).DeclaredProperties where !noAdd.Contains(el.Name) select el).ToList();
    foreach( System.Reflection.PropertyInfo prop in props)
    {
        string sName =prop.Name;
        string sType =prop.PropertyType.Name;
    #>
            public static <#= sType #> <#= sName #> { get { return CommonResources.<#= sName #>; } }
    <#
    }
    #>
    }
}

 

Algunas aclaraciones de la plantilla.

<#@ template debug=”true” hostspecific=”true” language=”xx” #>
Determina que se trata de una plantilla, a la cual
podemos querer depurar, y que es específica para el “host” (en este caso, el entorno de Visual Studio. En esta plantilla en particular es importante, ya que necesitamos obtener información del proyecto donde se encuentra la plantilla. En forma predeterminada este valor viene en falso, y por tanto, nos daría un error al tratar de acceder a información del proyecto, como veremos luego.

<#@ assembly name=”EnvDTE” #>  

Necesitamos incluir este ensamblado, dado que vamos a obtener información del entorno de desarrollo (ese ensamblado aplica precisamente, a comunicarse con el propio entorno de Visual Studio).

dim serviceProvider as IServiceProvider= Me.Host  
dim dte as EnvDTE.DTE = serviceProvider.GetService(gettype(EnvDTE.DTE)) 

Obtiene la instancia actual del entorno de desarrollo de Visual Studio.

dim item = dte.Solution.FindProjectItem(Host.TemplateFile).ContainingProject

dim OutPutFile as string= item.Properties(“FullPath”).value & “bin\debug\” & item.Properties(“OutputFileName”).Value

Obtiene el Proyecto actual y de este, genera en la variable OutPutFile, el camino completo a la DLL resultante de la compilación del proyecto.

Dim ass As System.Reflection.Assembly = System.Reflection.Assembly.LoadFrom(OutPutFile)
Dim t As Type = ass.GetType(“DS.Resources.My.Resources.CommonResources”)

Cargamos por reflexión dicha dll, y obtenemos la definición de la clase CommonResources, que es la que contiene nuestros recursos.

Dim props = (From el In DirectCast(t, System.Reflection.TypeInfo).DeclaredProperties Where Not {“ResourceManager”, “Culture”}.Contains(el.Name)).ToList

En la variable Props, obtenemos todas las propiedades definidas en dicha clase, excluyendo, las dos que siempre se definen en los archivos de recursos: ResourceManager y Culture, dado que no son definidas por nosotros.

Luego, sencillamente, recorremos esa lista, y generamos las distintas propiedades de la clase pública.

Al grabar la plantilla, el entorno transformará el mismo generando la clase.

Nota: por estar generando código dinámicamente, el entorno alerta de dicha situación, por temas de seguridad


Quedando el resultado como el siguiente ejemplo.

 

Public Class Resources
    Public Shared ReadOnly Property Copyright As String
        Get
            Return My.Resources.CommonResources.Copyright
        End Get
    End Property
    Public Shared ReadOnly Property ErrorTitle As String
        Get
            Return My.Resources.CommonResources.ErrorTitle
        End Get
    End Property
    Public Shared ReadOnly Property FKError As String
        Get
            Return My.Resources.CommonResources.FKError
        End Get
    End Property
    Public Shared ReadOnly Property NameValueList_MissingType As String
        Get
            Return My.Resources.CommonResources.NameValueList_MissingType
        End Get
    End Property
    Public Shared ReadOnly Property NotAllowedBySystem As String
        Get
            Return My.Resources.CommonResources.NotAllowedBySystem
        End Get
    End Property
End Class

using System;

namespace DS.Resources
{
   public static class Resources
    {    public static String Copyright { get { return CommonResources.Copyright; } }    public static String ErrorTitle { get { return CommonResources.ErrorTitle; } }    public static String FKError { get { return CommonResources.FKError; } }    public static String NameValueList_MissingType { get { return CommonResources.NameValueList_MissingType; } }    public static String NotAllowedBySystem { get { return CommonResources.NotAllowedBySystem; } }
        }
}

 

Un detalle: si revisas el código resultante, verás que no es similar. Esto es porque en los dos lenguajes, la ubicación por espacio de nombres es diferente. En VB, los recursos se incluyen dentro del espacio de nombres especial My, que se refiere al proyecto completo, que en C# no existe.

Pero, para los objetivos buscados, son idénticos.

Hasta la próxima, donde probaremos estas cosas. (Adecuadamente)

 

Bibliotecas Comunes y Herramientas


Bien, como fue comentado en la publicación anterior, vamos a comenzar a crear nuestra propia biblioteca de herramientas y elementos de soporte (a algunos les ha dado por llamarlo “Framework” ).

Aprovechando las ventajas de diseño de Visual Studio (por cierto, estoy usando VS2017), el gráfico representa el esquema base de la solución.

Este esquema lo iremos ampliando con otras bibliotecas a futuro. (Por cierto, son bibliotecas, aunque la mayoría les digan librerías… que librerías son las que venden libros ).

Para facilitar la comprensión del código, la misma solución está desarrollada en paralelo, en C# y en VB. Lo interesante es que son perfectamente intercambiables (y mezclables, puedes usar una dll de un idioma y otra de otro, y funcionarán perfectamente).

Common.

Primero lo primero. O sea, elementos comunes que podrán ser utilizados por cualesquiera de nuestras bibliotecas


En esta biblioteca incluimos toda la implementación de los valores con nombre, a saber:

  • INameValue
  • NameValue<T>
  • NameValueList

Agregamos algunos atributos que seguramente usaremos a futuro (para implementar, por ejemplo, modelos de datos)

  • DataFieldAttribute
  • DataKeyAttribute
  • DataRelationAttribute
  • DefaultValueEnum

Y una interfaz que nos permitirá luego diferenciar errores cuando sean propios del sistema (excepciones), o los que implementen esta interfaz, aquellos que deben ser informados al usuario.

  • IUserMessageError

Tools

Como segundo proyecto de nuestro entorno de trabajo, creamos la biblioteca de Herramientas, que nos será útil para muchas acciones comunes a cualquier proyecto. En ella, que irá evolucionando seguramente, definiremos aquellos métodos que nos serán útiles repetidas veces.

Lo importante es, darse cuenta a tiempo, cuándo una función que escribimos, podría ser útil en otro caso .


Tenemos en esta biblioteca, las siguientes clases:

  • Reflection: de la que hablamos hace unas publicaciones atrás, que nos permite evaluar características de nuestras propias clases.
  • Logger: como su nombre indica, esta clase permitirá escribir en un log, sea este un archivo físico o el de Aplicación del Sistema Operativo.
  • Interaction: Este es un caso particular… me encontré en más de una ocasión, que cierta funcionalidad implementada en uno de los lenguajes de programación, no tenía correspondencia en el otro. Raro, pero a veces pasa. Como ejemplo, una de las funciones útiles en VB que no existe en C#. CallByName y que en esta clase, podemos implementar. Para mantener coherencia entre distintas versiones de bibliotecas, aun cuando en VB esa función existe como nativa, la mantenemos implementada en esta biblioteca también.

Queda aquí como ejemplo, ambas versiones de esta función, para que quede claro el concepto. Por lo demás, el código está perfectamente comentado. (en inglés, para que sirva a cualquiera que lo desee utilizar, sin barreras de idioma).

En la próxima, una biblioteca que plantea algún desafío interesante, y una herramienta de Visual Studio que nos permite subsanarlo… y la publicación del conjunto completo de código.


public static object CallByName(
    object ObjectRef,
    string ProcName,
    CallType UseCallType,
    params object[] Args
    )
{
    switch (UseCallType)
    {
        case CallType.Method:
            MethodInfo m = ObjectRef.GetType().GetMethod(ProcName);
            return m.Invoke(ObjectRef, Args);
        case CallType.Get:
            PropertyInfo p = ObjectRef.GetType().GetProperty(ProcName);
            return p.GetValue(ObjectRef, Args);
        case CallType.Let:
        case CallType.Set:
            {
                PropertyInfo pL = ObjectRef.GetType().GetProperty(ProcName);
                if (Args == null)
                {
                    pL.SetValue(ObjectRef, null);

                }
                else
                {
                    pL.SetValue(ObjectRef, Args[0]);
                }
                return null;
            }
    }
    throw new ArgumentException(string.Format("Invalid CallType {0}", UseCallType));
}


Public Shared Function CallByName(
                                 ObjectRef As Object,
                                 ProcName As String,
                                 UseCallType As CallType,
                                 ParamArray Args As Object()
                                 ) As Object
    Return Microsoft.VisualBasic.CallByName(
                        ObjectRef,
                        ProcName,
                        UseCallType,
                        Args
                    )
End Function

 

Reflection


Donde nos ponemos a investigar un poco que tienen nuestros objetos.

Donde nos ponemos a investigar un poco que tienen nuestros objetos.

Motivación.

Para muchas de las cosas que venimos explicando, acerca de generalizaciones de código, métodos compartidos y demás, cuando programemos, seguramente querremos interactuar con dichas generalizaciones, pero de un modo más específico.

Por ejemplo, en la anterior publicación, hablábamos de Atributos.

¿Cómo hago para saber si una propiedad tiene determinado atributo?

¿Cómo obtengo los miembros que tienen cierto atributo?

El espacio de nombres System.Reflection.

El .Net Framework implementa este espacio de nombres específico, para poder investigar los objetos.

Con él, a partir del Type de un objeto, se puede obtener información de sus miembros, sus atributos, su jerarquía de herencia etc.

El espacio expone objetos que sirven como descriptores de las características de un tipo, como, por Ejemplo:

  • Assembly
  • MemberInfo
  • PropertyInfo

Dichos objetos se obtienen, como fue dicho, del Type de un objeto o instancia utilizando el método GetType()

Obtener el tipo

Existen distintos métodos para obtener el tipo, dependiendo si se tiene o no una instancia del mismos.

Los métodos, todos retornando un objeto Type, se describen en el siguiente cuadro

    

C#

VB

Con Instancia

variable.GetType()

variable.GetType

Sin Instancia

typeof(Nombre_De_Clase)

GetType(Nombre_de_Clase)

Funciones.

En muchos casos, utilizaremos LinQ sobre objetos para obtener información (lo cual facilita la codificación y acelera el proceso).

Comprobar Propiedades.

Comprobar si tiene un atributo


private static bool HasAttribute(PropertyInfo p, string attributeName)
{
   var attrs = p.GetCustomAttributesData();
    if (attrs.Count > 0)
    {
        var attrs2 = (from aa in attrs where aa.AttributeType.Name == attributeName select aa).ToList();
        return attrs2.Count > 0;
    }
    return false;
}


Private Shared Function HasAttribute(p As PropertyInfo, attributeFullName As StringAs Boolean
    Dim attrs = p.GetCustomAttributesData
    If attrs.Count > 0 Then
        Dim attrs2 = (From aa In attrs Where aa.AttributeType.Name = attributeFullName).ToList
        Return attrs2.Count > 0
    End If
    Return False
End Function

Como se ve, se aplica sobre un objeto PropertyInfo y filtra directamente por nombre.

Obtener los atributos de una propiedad


public static NameValueList GetAttributes(PropertyInfo property)
{
    NameValueList result = new NameValueList();
    var v = property.GetCustomAttributesData();
    foreach (var a_loopVariable in v)
    {
        var a = a_loopVariable;
        foreach (var named_loopVariable in a.NamedArguments)
        {
            var named = named_loopVariable;
            NameValue<object> nv = new NameValue<object>(named.MemberName) { RawValue = named.TypedValue.Value };
            result.Add(nv);
        }
    }
    return result;
}


Public Shared Function GetAttributes(ByVal [property] As PropertyInfoAs DSCommon.NameValueList
    Dim result As New DSCommon.NameValueList
    Dim v = [property].GetCustomAttributesData()
    For Each a In v
        For Each named In a.NamedArguments
            Dim nv As New DSCommon.NameValue(Of Object)(named.MemberName) With {.RawValue = named.TypedValue.Value}
            result.Add(nv)
        Next
    Next
    Return result
End Function

En este caso, la función retorna todos los atributos asignados a un PropertyInfo (o sea, a una propiedad), y retorna nuestro NameValueList con los valores obtenidos.

Obtener miembros específicos por atributo de un tipo

Obtener las propiedades que poseen un determinado atributo.


public static List<PropertyInfo> GetPropertiesByAttribute(Type type, Attribute attribute)
{
    string s = attribute.GetType().ToString();
    var v = (from p in type.GetProperties() where (from aa in p.GetCustomAttributes(truewhere aa.ToString() == s select aa).Count() > 0 select p);
    List<PropertyInfo> l = new List<PropertyInfo>();
    l.AddRange(v);
    return l;
}


Public Shared Function GetPropertiesByAttribute(ByVal type As TypeByVal attribute As AttributeAs List(Of PropertyInfo)    Dim s As String = attribute.GetType.ToString
    Dim v = (From p As PropertyInfo In type.GetProperties
             Where (From aa In p.GetCustomAttributes(TrueWhere aa.ToString = s).Count > 0)
    Dim l As New List(Of PropertyInfo)
    l.AddRange(v)
    Return l
End Function

En este caso, la función se aplica sobre un tipo, del cual se obtienen las propiedades. De ellas, aquellas que tengan asignado un determinado atributo.

Obtener miembros específicos por nombre del atributo de un tipo


public static List<PropertyInfo> GetPropertiesByAttribute(
Type type, string attributeFullName)
    var v = (from p in type.GetProperties() where (HasAttribute(p, attributeFullName)) select p);
 
    List<PropertyInfo> l = new List<PropertyInfo>();    l.AddRange(v);
    return l;
}


Public Shared Function GetPropertiesByAttribute(ByVal type As TypeByVal attributeFullName As StringAs List(Of PropertyInfo)
    Dim v = (From p As PropertyInfo In type.GetProperties
            Where (HasAttribute(p, attributeFullName)))
    Dim l As New List(Of PropertyInfo)
    l.AddRange(v)
    Return l
End Function

En este caso, en lugar de utilizar el atributo propiamente dicho, se utiliza su nombre.

Comprobar clases.

Obtener los nombres de las clases que heredan de otra (o implementan una interfaz)


public static string[] GetClasesOfType<T>(System.Reflection.Assembly assembly)
{
    Type theI = typeof(T);
    var elems = (from el in assembly.GetTypes() where theI.IsAssignableFrom(el) select el.Name).ToArray();
    return elems;
}


Public Shared Function GetClasesOfType(Of T)(assembly As System.Reflection.AssemblyAs String()
    Dim theI As Type = GetType(T)
    Dim elems = (From el In assembly.GetTypes() Where theI.IsAssignableFrom(el) Select el.Name).ToArray()
    Return elems
End Function

Terminamos teniendo una nueva herramienta

Agregaremos entonces una clase a nuestra biblioteca de herramientas (Tools), que podríamos llamar, precisamente, Reflection, para exponer estos métodos.

Nótese que todos están declarados como static (Shared en VB), para poder utilizarlas sin necesitar crear una instancia de la clase.

En la próxima entrega, repasaremos el espacio de nombre Tools y lo complementaremos con más cositas

Atributos


Existen en .Net clases especiales que agregan indicadores funcionales a distintas partes del código, como Clases, métodos, propiedades, etc.

La intención de los mismos es permitir indicar características especiales a dichos elementos, como por ejemplo, en el caso de propiedades de controles, si son editables en tiempo de diseño, si se permite al usuario modificarlas, entre otras.

Otro ejemplo es la indicación de funcionalidades específicas, como por ejemplo, en un enumerador, cuando éste debe comportarse como “Mapa de bits” (atributo Flags).

Una característica interesante del propio .Net Framework es que es posible definir Atributos personalizados.

Se trata sencillamente de crear una clase que herede de System.Attribute

Los estándares de nomenclatura de .net Framework indican que el nombre de la clase debe terminar con Attribute. (Llamativamente, durante su utilización, esa parte del nombre no es necesaria). Por Ejemplo:

DataFieldAttribute

Por lo demás,al igual que cualquier otra clase, pueden tener propiedades, métodos, constructores, etc. aunque normalmente, no se implementa código ejecutable, si es posible hacer uso de los mismos con propiedades que definan características específicas de aquello a lo cual queremos aplicarle el atributo.

En el siguiente ejemplo, se define un atributo específico para propiedades, que indica que la misma se corresponde con un campo específico de una tabla de base de datos.Inclusive, en forma opcional, se podrá indicar que valor predeterminado utiliza (usando un enumerador).

Veamos el código,y luego analizaremos algunos detalles.

VB

Imports System.Runtime.CompilerServices
 
 
<AttributeUsage(AttributeTargets.[Property] Or AttributeTargets.Field, Inherited:=False, AllowMultiple:=False)> _
Public Class DataFieldAttribute
    Inherits Attribute
    Public Property ColumnName() As String
        Get
            Return m_ColumnName
        
End Get         Set(value As String)
             m_ColumnName
= value
        
End Set     End Property     Private m_ColumnName As String     Public Property DefaultValue() As DefaultValueEnum         Get             Return m_DefaultValue
        
End Get         Set(value As DefaultValueEnum)
             m_DefaultValue
= value
        
End Set     End Property     Private m_DefaultValue As DefaultValueEnum     Public Sub New(<CallerMemberName> Optional columnName As [String] = "", Optional defaultValue As DefaultValueEnum = DefaultValueEnum.None)
        
Me.ColumnName = columnName
        
Me.DefaultValue = defaultValue
    
End Sub End Class Public Enum DefaultValueEnum     Now
    AutoIncrement
    None
End Enum

C#

using System;
using System.Runtime.CompilerServices;
 
namespace DS.Common
{
     [
AttributeUsage(AttributeTargets.Property | AttributeTargets.Field, Inherited = false, AllowMultiple = false)]     public class DataFieldAttribute : Attribute     {
        
public string ColumnName
         {
            
get { return m_ColumnName; }
            
set { m_ColumnName = value; }
         }
        
private string m_ColumnName;
        
public DefaultValueEnum DefaultValue
         {
            
get { return m_DefaultValue; }
            
set { m_DefaultValue = value; }
         }
        
private DefaultValueEnum m_DefaultValue;
        
public DataFieldAttribute([CallerMemberName()] String columnName = "", DefaultValueEnum defaultValue = DefaultValueEnum.None)
         {
            
this.ColumnName = columnName;
            
this.DefaultValue = defaultValue;
         }
     }
    
public enum DefaultValueEnum     {
         Now,
         AutoIncrement,
         None
     } }

 

Puntos importantes.

  • La clase hereda efectivamente de Attribute. A su vez, tiene asignado un atributo indicando que puede aplicarse a Propiedades y/o Campos.  Además, que sólo puede aplicarse una vez en cada propiedad o campo.
  • Posee propiedades ColumnName y DefaultValue
  • DefaultValue es de un tipo también definido en el código, el enumerador DefaultValueEnum
  • Finalmente,el constructor admite dos argumentos, columnName y defaultValue, respectivamente, para asignar a las propiedades correspondientes.
  • Ambos parámetros son opcionales.  Para el valor predeterminado se asigna None, y para el nombre de la columna, una cadena vacía.
  • Sin embargo, en caso deno indicarse un valor cuando se instancia el atributo, el mismo usa una funcionalidad del compilador, el atributo CallerMemberName, que permite asignar el valor del elemento que lo llama (en este caso, el nombre de la propiedad o el campo), en lugar de la cadena vacía, con lo cual, en ningún caso tendría un valor vacío.

Espero pronto poder, finalmente, combinar distintos elementos que vimos, para crear algo más funcional.

Nos vemos pronto.

Una colección para tus nombres-Valor


Siguiendo con la biblioteca de útiles, veamos ahora de tener una clase que nos permita almacenar y manipular varias instancias de la clase NameValue de la publicación pasada.

Personalizando una lista

Esto en realidad, puede ser tan sencillo como crear una clase que herede de la genérica List. Sin embargo, para hacerla debemos definir de que clase es esa lista y, como vimos anteriormente, estamos definiendo diferentes clases, de acuerdo al tipo de dato a almacenar.

Para ello, viene  en nuestra ayuda la interfaz INameValue.

Public Class NameValueList
    Inherits List(Of INameValue)

Y ya la tenemos. Sonrisa

Sin embargo, podríamos agregar algunas funcionalidades como el agregado de un elemento, dependiendo del tipo de dato.

Esto permitiría tener un método genérico que “traduzca” tipos de datos, por ejemplo, cuando necesitamos transformar desde otros entornos (como datos venidos desde bases de datos)

Automatizando el agregado de elementos

Definamos pues, un método que cree una instancia de la clase NameValue, y le asigne el valor recibido:

Private Function CreateNameValue(
                    name As String,
                    value As Object,
                    type As Type) As INameValue

Como vemos, el valor se recibe como de tipo objeto, que admitirá cualquier valor, y en parámetro independiente, el tipo deseado.

Lo que retorna la función es la interfaz genérica INameValue.

Internamente, la función define una variable para crear el valor de retorno, y obtenemos, como cadena de caracteres, el nombre del tipo a utilizar.

        Dim retvalue As INameValue
        Dim sName As String = type.Name

Luego, seleccionamos basados en dicho nombre, para crear la instancia a retornar, utilizando la sentencia Select Case

Select Case sName
    Case "BigInt"
        retvalue =
            New NameValue(Of Int64)(name)
    Case "Binary"
        retvalue =
            New NameValue(Of Byte())(name)
    Case "Bit"
        retvalue =
            New NameValue(Of Boolean)(name)

(la lista es bastante más larga).

Una ventaja de la sentencia Select es que nos permite ejecutar una acción, al seleccionar uno de varios valores en la misma sentencia. Así, por ejemplo, para los valores de cadenas de caracteres, podemos agruparlos en un solo case. Además, en el ejemplo, vemos que no solo usamos los tipos de datos propios de .Net, sino también, otros como VarChar, NVarchar, Text, que son propios de bases de datos:

Case "NChar",
        "NText",
        "NVarChar",
        "Text",
        "VarChar",
        "Xml",
        "String"
    retvalue =
        New NameValue(Of String)(name)

Ante la ocurrencia no cubierta, mostrar el error.

Aún cuando queramos ser muy detallistas, es factible que no contemplemos todos los tipos posibles. Por ello, si nos encontramos ante esa situación, es importante informarnos de ello con una excepción específica. Cuando ninguna de las opciones de selección ocurre, (el caso diferente), procedemos a ello:

Case Else
   Debug.WriteLine(
      String.Format(
         "Case ""{0}",type.ToString))
   Debug.WriteLine(
      String.Format(
         "retvalue = New NameValue(Of {0})(name)",
         type.ToString))
   Throw New NotImplementedException(
      String.Format(
         "Missing type={0}",
         type.ToString)
      )

Pero también existen los tipos que admiten valores nulos.

Como es posible recibir de esos tipos de datos, debiéramos contemplar también esa posibilidad.

para ello, detectamos si el tipo admite nulos (es Nullable), y utilizamos un select similar, para dichos valores, dejando el ya definido, para los que no lo admiten, encapsulando esta decisión, obviamente, con una sentencia If.

        Dim isNullable As Boolean =
            type.FullName.StartsWith("System.Nullable")
        If isNullable Then
            'Get the base type Name
            Dim splitter = Split(type.FullName, "[")
            splitter = splitter(2).Split(",")
            sName = splitter(0).Replace("System.", "")
        End If
        If isNullable Then

Exponiendo la creación de nuevos elementos.

Todo este procedimiento lo hemos incluido en un miembro privado, solo visible dentro de la propia clase, para crear el nuevo elemento. Definamos pues un método visible externamente que además de crearlo, lo agregue a la lista.

    Public Sub AddElement(
                name As String,
                value As Object,
                type As Type)
        Me.Add(
            CreateNameValue(
                name,
                value,
                type)
            )
    End Sub

Obteniendo un valor por su nombre.

La clase base List solo es capaz de retornar un elemento específico por su índice pero no por un literal (lo cual, por cierto, si puede hacerlo un Dictionary).

Pero elegimos List para que fuese más liviano y además, fácilmente serializable.

Además, perfectamente podemos implementar el método que nos retorne el valor por el nombre, con el siguiente código.

    Public Function GetByName(
                        name As String) As INameValue
        Return (
            From el
            In Me
            Where
                el.Name.ToUpper =
                name.ToUpper
                ).FirstOrDefault
    End Function

Eehhh si, estoy usando LinQ. (ya voy a publicar algo específico de esto enseguida) Sonrisa

Y así quedaría el código completito

Public Class NameValueList
    Inherits List(Of INameValue)
    Public Sub AddElement(
                name As String,
                value As Object,
                type As Type)
        Me.Add(
            CreateNameValue(
                name,
                value,
                type)
            )
    End Sub
    Private Function CreateNameValue(
                        name As String,
                        value As Object,
                        type As Type) As INameValue
        Dim retvalue As INameValue
        Dim sName As String = type.Name
        Dim isNullable As Boolean =
            type.FullName.StartsWith("System.Nullable")
        If isNullable Then
            'Get the base type Name
            Dim splitter = Split(type.FullName, "[")
            splitter = splitter(2).Split(",")
            sName = splitter(0).Replace("System.", "")
        End If
        If isNullable Then
            Select Case sName
                Case "BigInt"
                    retvalue = New NameValue(Of Int64?)(name)
                Case "Bit"
                    retvalue = New NameValue(Of Boolean?)(name)
                Case "Boolean"
                    retvalue = New NameValue(Of Boolean?)(name)
                Case "Char"
                    retvalue = New NameValue(Of Char?)(name)
                Case "DateTime"
                    retvalue = New NameValue(Of DateTime?)(name)
                Case "Decimal"
                    retvalue = New NameValue(Of Decimal?)(name)
                Case "Float"
                    retvalue = New NameValue(Of Decimal?)(name)
                Case "Int"
                    retvalue = New NameValue(Of Integer?)(name)
                Case "Money"
                    retvalue = New NameValue(Of Decimal?)(name)
                Case "Real"
                    retvalue = New NameValue(Of Double?)(name)
                Case "UniqueIdentifier"
                    retvalue = New NameValue(Of Guid?)(name)
                Case "SmallDateTime"
                    retvalue = New NameValue(Of DateTime?)(name)
                Case "SmallInt"
                    retvalue = New NameValue(Of Int16?)(name)
                Case "SmallMoney"
                    retvalue = New NameValue(Of Decimal?)(name)
                Case "TinyInt"
                    retvalue = New NameValue(Of Int16?)(name)
                Case "Date", "System.DateTime"
                    retvalue = New NameValue(Of Date?)(name)
                Case "Time"
                    retvalue = New NameValue(Of DateTime?)(name)
                Case "DateTime2"
                    retvalue = New NameValue(Of DateTime?)(name)
                Case "DateTimeOffset"
                    retvalue = New NameValue(Of TimeSpan?)(name)
                Case "Int32"
                    retvalue = New NameValue(Of System.Int32?)(name)
                Case "Int16"
                    retvalue = New NameValue(Of System.Int16?)(name)
                Case "Int64"
                    retvalue = New NameValue(Of System.Int64?)(name)
                Case "Double"
                    retvalue = New NameValue(Of System.Double?)(name)
                Case Else
                    Debug.WriteLine(String.Format("Case ""{0}", type.ToString))
                    Debug.WriteLine(String.Format("retvalue = New NameValue(Of {0})(name)", type.ToString))
                    Throw New NotImplementedException(String.Format("Missing type={0}", type.ToString))
            End Select

        Else
            Select Case sName
                Case "BigInt"
                    retvalue =
                        New NameValue(Of Int64)(name)
                Case "Binary"
                    retvalue =
                        New NameValue(Of Byte())(name)
                Case "Bit"
                    retvalue =
                        New NameValue(Of Boolean)(name)
                Case "Boolean"
                    retvalue = New NameValue(Of Boolean)(name)
                Case "Char"
                    retvalue = New NameValue(Of Char)(name)
                Case "DateTime"
                    retvalue = New NameValue(Of DateTime)(name)
                Case "Decimal"
                    retvalue = New NameValue(Of Decimal)(name)
                Case "Float"
                    retvalue = New NameValue(Of Decimal)(name)
                Case "Image"
                    retvalue = New NameValue(Of Byte())(name)
                Case "Int"
                    retvalue = New NameValue(Of Integer)(name)
                Case "Money"
                    retvalue = New NameValue(Of Decimal)(name)
                Case "NChar",
                        "NText",
                        "NVarChar",
                        "Text",
                        "VarChar",
                        "Xml",
                        "String"
                    retvalue =
                        New NameValue(Of String)(name)
                Case "Real"
                    retvalue = New NameValue(Of Double)(name)
                Case "UniqueIdentifier"
                    retvalue = New NameValue(Of Guid)(name)
                Case "SmallDateTime"
                    retvalue = New NameValue(Of DateTime)(name)
                Case "SmallInt"
                    retvalue = New NameValue(Of Int16)(name)
                Case "SmallMoney"
                    retvalue = New NameValue(Of Decimal)(name)
                Case "Timestamp"
                    retvalue = New NameValue(Of Byte())(name)
                Case "TinyInt"
                    retvalue = New NameValue(Of Int16)(name)
                Case "VarBinary"
                    retvalue = New NameValue(Of Byte())(name)
                Case "Variant"
                    retvalue = New NameValue(Of Object)(name)
                Case "Udt"
                    retvalue = New NameValue(Of Object)(name)
                Case "Structured"
                    retvalue = New NameValue(Of Object)(name)
                Case "Date", "System.DateTime"
                    retvalue = New NameValue(Of Date)(name)
                Case "Time"
                    retvalue = New NameValue(Of DateTime)(name)
                Case "DateTime2"
                    retvalue = New NameValue(Of DateTime)(name)
                Case "DateTimeOffset", "TimeSpan"
                    retvalue = New NameValue(Of TimeSpan)(name)
                Case "Int32"
                    retvalue = New NameValue(Of System.Int32)(name)
                Case "Int16"
                    retvalue = New NameValue(Of System.Int16)(name)
                Case "Int64"
                    retvalue = New NameValue(Of System.Int64)(name)
                Case "Byte[]"
                    retvalue = New NameValue(Of System.Byte())(name)
                Case "Double"
                    retvalue = New NameValue(Of System.Double)(name)
                Case Else
                    Debug.WriteLine(
                        String.Format(
                            "Case ""{0}",
                            type.ToString))
                    Debug.WriteLine(
                        String.Format(
                            "retvalue = New NameValue(Of {0})(name)",
                            type.ToString))
                    Throw New NotImplementedException(
                        String.Format(
                            "Missing type={0}",
                            type.ToString)
                        )
            End Select
        End If
        retvalue.RawValue = value
        Return retvalue
    End Function
    Public Function GetByName(
                        name As String) As INameValue
        Return (
            From el
            In Me
            Where
                el.Name.ToUpper =
                name.ToUpper
                ).FirstOrDefault
    End Function
End Class

Generalizando el código


Donde empezamos a crear bibliotecas de herramientas útiles.

Finalmente, luego del parate de los últimos tiempos, volvemos al ruedo con cuestiones ya directamente prácticas.

Comencemos por definir algunas herramientas útiles a nuestros quehaceres diarios.

Para ello, crearemos un proyecto de elementos comunes (de nombre Common, por ejemplo), para definir allí elementos que serán útiles en muchos otros proyectos.

En los ejemplos, utilizaré mis propios proyectos como ejemplo. Por ello, todos ellos tienen un espacio de nombres común: DS  🙂

Entonces, comencemos creando el proyecto [ComoQuierasLlamarlo].Common.

O sea, te creas n Nuevo Proyecto, eliges el leguaje de programación de tu elección (yo, prefiero VB, pero da igual).

Te recomiendo que mantengas en una misma solución, todas tus bibliotecas de utilidades, para poder vincularlas desde otras soluciones y aislar el código.

Además, si utilizas Azure Team Foundation, o cualquier otro protector de código, con Git o similares, mantenerlo en una solución protegida te ayudará a nunca perder tu código.

Clases para intercambiar valores.

Muchas veces, es necesario intercambiar valores entre funciones, bibliotecas, elementos externos, etc. y queremos mantener aisladas las referencias a bibliotecas específicas (por ejemplo, a bibliotecas de bases de datos, de repositorios, etc.).

También sucede que algunas bibliotecas, (de nuevo, bases de datos, por ejemplo), no siempre utilizan los mismos tipos de datos que otras. Entonces, se podría necesitar pasar valores como tipo “Object”, o sea, de modo no tipificado.

Por otra parte ya vimos que siempre que sea factible, es mejor utilizar los tipos de datos específicos.

Y necesitaremos conocer el nombre de cada uno de los valores que queremos intercambiar.

Entonces necesitaríamos

  • Una clase que exponga un valor con su tipo especifico
  • Que posea el nombre del valor en cuestión (o sea, nombre del argumento o propiedad)
  • Una forma genérica de acceder al valor, como si fuera objeto.

Si además quisiéramos contenerlas en una lista, colección o diccionario, si las hiciésemos específicas, sería muy complejo definir dicha colección, dadas las diferencias de tipos.

Por ello, recurriremos a una interfaz de nuestros objetos “Valor-Nombre”:

Public Interface INameValue
    Property Name As String
    Property RawValue As Object
End Interface

Creando clases genéricas

Estando así las cosas, y dadas nuestras necesidades, es cuando surge la posibilidad de utilizar generalizaciones (Generics) para poder definir nuestra clase de nombre-valor, acorde a cada tipo de dato.

Una clase definida como genérica, permite definir la misma para que en el momento de crear una instancia, recién allí se defina el tipo de dato en  cuestión.

Se debe declarar la clase, indicando que será de un “tipo no definido” utilizando la sintaxis (Of T). (<T> en C#)

Entonces, en cada método o función que se requiera especificar el tipo que se asignará cuando se cree la instancia, se utiliza la letra T (puede ser cualquier letra, sencillamente se usa la T de Type = Tipo)

Por ejemplo, nuestra clase expondrá el valor con el tipo específico, con la propiedad Value; entonces, la declaratoria sería:

    Public Property Value As T
  • La propiedad Nombre
  • La propiedad RawValue que, al recibir un valor, debe convertirlo al tipo de datos correcto.
#Region "INameValue"
    Implements INameValue
    Public Property Name As String Implements INameValue.Name
    Public Property Value As T
    Public Property RawValue As Object Implements INameValue.RawValue
        Get
            Return Me.Value
        End Get
        Set(value As Object)
            If Not value Is Nothing AndAlso Not TypeOf value Is DBNull OrElse TypeOf Me.Value Is Nullable Then
                Me.Value = CType(value, T)
            End If
        End Set
    End Property
#End Region

Además, al ser tipos no específicos, cabe que tengamos que manipular los operadores. Como ejemplo, vayan estos dos:

Public Shared Operator =(first As NameValue(Of T), second As NameValue(Of T)) As Boolean
        Return first.RawValue.ToString =  second.RawValue.ToString
End Operator
Public Shared Operator <>(first As NameValue(Of T), second As NameValue(Of T)) As Boolean
        Return first.RawValue.ToString <> second.RawValue.ToString
End Operator

Finalmente, agreguemos un constructor para poder definir nuevas instancias pasando el nombre.

    Sub New(name As String)
        Me.Name = name
    End Sub

El mismo código, en lenguaje C#.

 

public class NameValue<T> : INameValue
{
    public string Name { get; set; }
    public object RawValue
    {
        get
        {
            return this.Value;
        }
        set
        {
            if (value != null && value != DBNull.Value || Nullable.GetUnderlyingType(this.Value.GetType()) != null)
            {
                this.Value = (T)value;
            }
        }
    }
    public T Value;
    public static bool operator ==(NameValue<T> first, NameValue<T> second)
    {
        return first.RawValue.ToString() == second.RawValue.ToString();
    }
    public static bool operator !=(NameValue<T> first, NameValue<T> second)
    {
        return first.RawValue.ToString() != second.RawValue.ToString();
    }
    public NameValue(string name)
    {
        this.Name = name;
    }
}

El blog de Dani Seara

Microsoft Azure Blog

El blog de Dani Seara

VIVIENDO RODANDO

de rodar con cámara a rodar en una silla

Matías Iacono

De los bits a la psiquis

Leandro Tuttini Blog

El blog de Dani Seara

WindowServer

El blog de los paso a paso

campusMVP.es

El blog de Dani Seara

Angel \"Java\" Lopez on Blog

Software Development, in the Third Millenium

Angel "Java" Lopez

El blog de Dani Seara

Atascado en los 70 II (El regreso)

Segunda época del rockblog "Atascado en los 70". VIEJAS canciones y artistas PASADOS DE MODA. Tratamos al lector de usted y escribimos "rocanrol" y "roquero" con ortografía castellana.

Santiago Porras Rodríguez

El blog de Dani Seara

Todo en ASP.NET

Blog dedicado al desarrollo Web y temas relacionado con tecnologías Microsoft.

El Bruno

Innovation Craftsman

Cajon desastre

Just another WordPress.com site

Pasión por la tecnología...

Todo sobre tecnología Microsoft en general, y SharePoint en partícular...

return(GiS);

Mi sitio geek